Okanagan Basin Hydrologic Modeling

July 6th, 2009

DHI Water & Environment & Summit Environmental Consultants

Outline

- Background/Objectives
- Model Overview
- Model Construction
- Previous Hydrology Model Calibration
- Addressing Comments/Improving Calibration
- Water Accounting Model Calibration
- Summary
- Next Steps

Background

Phase II of the Okanagan Basin Water Supply & Demand Project:

- A study of current water management and use
- A climate study
- Development of an Okanagan Water Demand Model
- A lake evaporation study
- A groundwater study
- An instream flow requirements study
- A surface water hydrology and hydrologic modeling study
- Development of a water accounting model

Objectives

- Develop a distributed hydrologic model of the Okanagan Basin to simulate naturalized conditions
- Calibrate and compare the model results with measured data and estimates from other studies
- Incorporate water use data to develop water accounting model
- Calibrate water accounting model to available measured data
- Estimate naturalized and historical weekly streamflows for the period 1996-2006 at 81 surface water nodes
- Upload results to the OKWater Database

Model Overview

and the state of the state of the

MIKE SHE

an Integrated Hydrological Modelling System that covers all land-based phases of the hydrologic cycle

white the state of the second second

Model Overview

- Snowmelt modified degree-day method
- Overland flow 2-dimensional finite-difference method
- Unsaturated flow and ET 2-layer water balance approach
- Groundwater flow linear reservoir approach
- Channel flow 1-dimensional hydrodynamic/routing approach

Model Overview

- <u>Domain</u>: Full Okanagan River Watershed upstream of Zosel Dam (Osoyoos Lake)
- <u>Area</u>: ~8,024 km²
- <u>Simulation Period</u>:
 9/1/1995 12/31/2006
- <u>Resolution</u>: 500-m by 500-m square grid cells
- <u>Coordinate system</u>: BC Albers projection, NAD 1983 datum

Model Construction – Climate - Okanagan Climate Data Interpolator (Duke et al., 2008) - 500 x 500-m grid resolution, daily time scale

Model Construction - Topography

- Drives the overland flow component of the model
- 30-m resolution Canadian DEM (Geobase) and 100-ft resolution US DEM (WA Dept. of Natural Resources) merged and re-sampled to 500-m resolution

Model Construction – Land Cover

Used to distribute vegetation properties (ET component) and roughness and detention storage values (overland flow component)

- Combination of data sources:
 - Base land cover maps (14)
 - Biogeoclimatic zones (4)
 - Disturbance areas (4)
 - Total of 67 zones

Model Construction – Land Cover

 Further subdivided by biogeoclimatic zones

• Categories:

BG-Bunchgrass

IDF/ICH - Interior Douglas Fir / Interior Cedar - Hemlock

MS/ESSF - Montane Spruce / Engelmann Spruce - Subalpine Fir

PP - Ponderosa Pine

Model Construction – Land Cover

- Further subdivided by disturbance zones
- Mountain Pine Beetle
 - Annual gridded map with 400-m resolution
- Large Fires
 - Annual polygon map
 - 2003 Kelowna Fire
- Major Logging
 - Annual polygons from the VRI
- Undisturbed

Model Construction – Leaf Area Index

- 1-km resolution 10-day interval gridded data from 1998-2005
- Used to construct timeseries for each of the 67 land cover categories

Model Construction – Streams and Lakes

- 176 river branches
- 146 Cross sections (lake bathymetry surveys, flood control surveys for Okanagan River)
- 5 control structures (lake operations)

Model Construction – Soils

- Used to distribute soil properties (unsaturated flow and ET components)
- Four soil maps were merged and aggregated into 25 classes
- Depth-averaged soil properties computed from horizon data:

Model Construction – Groundwater

Golder Groundwater Study

- 324 aquifers (79 alluvial aquifers)
- Recharge occurs primarily in the upland bedrock areas
- The bedrock system consists of a shallow interflow zone and a deeper fractured zone
- ~85% of the upland recharge reports to the shallow interflow zone and flows laterally to recharge downgradient alluvial aquifers

- MIKE SHE Linear Reservoir Groundwater Method

Model Construction – Groundwater

Baseflow Reservoirs

- Analogous to the deeper bedrock system
- Merged Golder bedrock aquifers with corresponding down-gradient alluvial aquifers

Model Construction – Groundwater

Interflow Reservoirs

- Analogous to the shallow bedrock system
- Upland reservoir Golder bedrock aquifers
- Lowland reservoir Golder alluvial aquifers plus a buffer around major streams

Hydrology Calibration – Overview

Available Data

- Overall basin water balance from previous studies
- Snow surveys (19 stations)
- Natural hydrographs (8 stations)
- Naturalized hydrographs (8 low-uncertainty, 15 moderateuncertainty, and 49 high uncertainty)
- Lake evaporation estimates (5 lakes)

Calibration – Parameters

- Detention Storage regulates magnitude and timing of runoff and indirectly effects infiltration and ET
- Riverbed Leakage Coefficient regulates surface water / groundwater exchange
- Soil Moisture Contents influences transpiration, infiltration, and groundwater recharge
- Saturated Hydraulic Conductivity (soils) controls infiltration and recharge
- Degree Day Coefficient Controls the rate at which snow is melted and converted to runoff
- Manning's Coefficients Controls timing and magnitude of runoff
- Interflow and Baseflow Time Constants controls timing and magnitudes of interflow and baseflow discharge to streams

Calibration – Water Balance

- ET 71 77% (1974 Study)
 60 85% (various sub-areas)
- Recharge 3% 15% (various sub-areas)
- Runoff 18% 25% (State of the Basin & 1974 Study)

		Mean Annual	Relative to
Water Balance	Total Depth	Depth	Precipitation
Term	(mm)	(mm)	(%)
Precipitation	7113.78	646.71	
ET	5757.74	523.43	80.9%
Recharge	459.62	41.78	6.5%
Runoff	846.46	76.95	11.9%

Results – Recharge Animation

Recharge Sept-96 – Sept 98

- 19 Stations with Snow
 Water Equivalent (SWE)
 data
- Ranging in elevation from 1266 to 1834-m
- Collected between
 December and June

100201-0022

and a stand and

-11/27/27/27/27/2

and the state of t

Results – SWE Animation

SWE Sept-95 – Sept 97

Calibration – Hydrographs

- 8 Natural Stations
- 8 Low Uncertainty
- 15 Moderate Uncertainty
- 49 High Uncertainty

Calibration – Natural Hydrographs

WERNING STREET

AND STREET STREET STORES IN STREET

Calibration – Natural Hydrographs

- Total flow volume and high flow period volume match very closely
- Low flow period volume over-predicted as a result of simulated autumn runoff events

		Natural Stations	
		Total Volume	%
		(cm)	Difference
	simulated	8.21E+08	2%
Total	observed	8.07E+08	~ 70
April -	simulated	6.89E+08	- 2 %
August	observed	7.03E+08	-~~/0
Sept -	simulated	1.32E+08	27%
March	observed	1.04E+08	~T/0

Calibration – Low Uncertainty Naturalized

Martin Martin

Calibration – Naturalized Stations

		Low Uncertainty			
		Stations		All Stations	
		Total		Total	
		Volume	%	Volume	%
		(cm)	Difference	(cm)	Difference
	simulated	4.22E+09	-10%	1.29E+10	18%
Total	observed	4.69E+09	-1070	1.10E+10	1070
April -	simulated	3.38E+09	-13%	9.29E+09	1%
August	observed	3.87E+09	1070	8.93E+09	470
Sept -	simulated	8.37E+08	9%	3.61E+09	78%
March	observed	8.22E+08	~ ~ ~ 0	2.03E+09	1070

Revised Calibration - Reducing Fall Runoff

Revised Calibration – Reducing Fall Runoff

Potential Causes

- Inaccuracies in the temperature data
 - Inherently difficult time of year to capture
 - Inversions
- Limitations of the degree-day method
 - Temporal changes in melt energy
 - Sub grid-scale effects

Revised Calibration – Reducing Fall Runoff

- Uniform temperature adjustment
- Revised inversion period methodology
- Overland roughness coefficients
- Detention storage
- Soil infiltration rates
- Minimum snow storage for full coverage
- Time-varying degree day coefficient

-11/13-71/2011-11/201 Revised Calibration – Reducing Fall Runoff

Revised Calibration – Reducing Fall Runoff

- Reduced low flow volumes substantially
- Small improvement to high flow volumes
- Baseflow under-predicted

	Natural Stations		Low Uncertainty Stations		
	Original Difference	Revised Difference	Original Difference	Revised Difference	
Total <u>simulated</u> observed	- 2%	1%	-10%	-12%	
April - <u>simulated</u> August observed	2%	2%	-13%	-9%	
Sept - <u>simulated</u> March observed	- 27%	-6%	2%	-30%	

Calibration – Lake Operations

- Simplified model constructed to isolate lake operations Okanagan Lake inflows from the FWMT specified as a boundary condition
- Various rule priority schemes based on the lake operation plan and the FWMT tested against historical water-levels and OK River discharges

Operational rules	Source	#1	#2	#3	#4
Maximum lake level	FWMT	1		1	1
Minimum lake level	FWMT	2		2	2
Minimum flow requirement downstream	FWMT			3	3
Maximum flow capacity at Penticton	FWMT	4			4
Maximum flow capacity at Oliver	FWMT	3			
Monthly lake level targets	operation plan	7	1	4	5
Flow requirement at Oliver from May 1 to Nov. 1 for Sockeye	FWMT	6		5	6

Calibration – Lake Operations

Revised Calibration – Lake Operations

15-minute adjustments

Revised Calibration – Lake Operations

Jan-98

Jan-99

Jan-00

Jan-01

15-minute adjustments

Jan-97

342.0

341.5

341.0

Jan-96

Results – Lake Evaporation

- MIKE SHE does not include a separate module for lake evaporation (simulated evaporation equals PET under moisture un-limited conditions in the absence of vegetation)
- Previous results influenced by drying lake cells revised values shown below

	MIKE SHE Mean Annual Evaporation (mm)	Evaporation Study Mean Annual Evaporation (mm)	% Difference from Evaporation Study
Okanagan Lake	908.30	475.16	91%
Kalamalka Lake	918.21	270.53	239%
Skaha Lake	972.75	449.90	116%
Vaseux Lake	1008.69	363.27	178%
Osoyoos Lake	1065.86	368.85	189%

Water Accounting Model

- Incorporate timeseries of net water-use at each node into the hydrology model as boundary conditions
- Water-use terms:

 $Q_{WUnet} = (Q_{Ri,t} + Q_{Ti,t})\Delta t + RF_{Si,t} + RF_{Gi,t} - E_{Si,t} - E_{Gi,t} - (\Sigma R_{RHj})_{i,t} \Delta t$

 Q_R = Upstream reservoir component of streamflow RF_S = Surface water component of return flow due to human activity RF_G = Groundwater component of return flow due to human activity Q_T = Rate of transfer from outside the natural contributing area E_S = Rate of extraction from surface water sources E_G = Rate of extraction from GW sources that would have discharged to streams R_{RH} = Human-affected rate of loss from rivers to aquifer R_{LH} = Human-affected rate of lake/pond/wetland seepage loss

Water Accounting Calibration – Available Data

- Lake level 5 lakes
- OK River 4 locations
- Tributaries 8 locations
 (+ 3 MOE stations?)

Water Accounting Calibration – Tributaries

WAR THE ALL STOL

and a state of the state of the

Water Accounting Calibration – Lake Level

ATTACK TO A CONTRACT OF A CONTRACT

Water Accounting Calibration – Lake Level

12002520

Water Accounting Calibration – OK River Discharge

Wash The Shartha

Water Accounting Calibration – OK River Discharge

TOMO CONTRACTOR OF

Salah Markatha

Summary

- Overall water budget agrees reasonably well with previous estimates ET somewhat higher and runoff lower
- Snow accumulation and melt agrees well with observed data tendency to over-predict snow accumulations at lower elevations and under-predict at higher elevations
- Tributary hydrographs agree well with naturalized and measured hydrographs for the most part
 - Freshet signal well-predicted
 - Fall runoff problem greatly reduced but still present
 - Under-predicted low flow period volume due to under-predicted baseflow

Summary

Lake operations need improvement

- Okanagan discharges fluctuate too rapidly
- Skaha, Vaseux and Osoyoos lake levels fluctuate too rapidly
- Decreased operation frequency improves pattern but reduces lake level calibration accuracy
- More detailed information about operations needed
- Lake levels and outflows
 - Under-predicted lake levels for Kalamalka and Okanagan lakes but not for Skaha, Vaseux, and Osoyoos
 - Under-predicted OK river discharge volumes at Penticton and OK Falls but not at Oliver or Oroville

Next Steps

- Finalize water accounting model calibration
- Compare recharge and baseflow results with groundwater study estimates
- Perform a sensitivity analysis
- Estimate uncertainty of simulated hydrographs
- Upload results to the OK Water Database
- Scenario analysis