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Abstract 

The diverse terrain of the Okanagan Basin has a strong localizing influence on climate. Model 
development for water supply and demand requires climate data inputs that reflect this 
complexity. The Okanagan Climate Data Model has been developed to provide climate 
information at a suitable scale for modelling climate dependent processes. Using GIS 
interpolation methodology and all available climate data from a number of sources, basin-wide 
500m x 500m gridded surfaces for daily minimum, maximum temperatures and precipitation 
have been generated for the period 1960 to 2000. Future daily climate data, up to the year 2100, 
have also been generated using output from six Global Climate Models (GCM) and three SRES 
scenarios reflecting high and low greenhouse gas emissions. GCM output has been downscaled 
to climate grid cells using a combined synoptic map typing and weather generator approach. 

The Okanagan Climate Data Model has been used to drive the Okanagan Irrigation Water 
Demand Model, which provides calculations of Penman Monteith reference and a range of 
agro-climatic indices for each climate grid cell in addition to crop and terrain based irrigation 
water demand. 

Introduction 

The terrain of the Okanagan Basin is diverse and has a strong influence on climate. Water 
supply and demand models require climate data inputs that reflect this complexity, but climate 
stations are few and located mainly in the valley bottom. Consequently, spatial interpolation at a 
suitable scale is required to fill in gaps in temperature and precipitation data. A number of 
approaches have been used previously to develop models which incorporate spatial correlation . 
and topographic effects on climate data. These include GIDS (Gradient plus Inverse-Distance­
Squared) which weights predictions derived from a multiple regression equation with the inverse 
distance to nearby climate stations within a specified search radius (Nalder and Weill, 1998) and 
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PRISM (Parameter-elevation Regressions on Independent Slopes Model) Daly et at. (1994) with 
a search neighbourhood limited to climate located on the same topographic facet (i.e., a common 
aspect). Other approaches include DA YMET (DAilY METeorology) (Thornton et at., 1997) 
which uses weighted observed climate values within a search radius using a Gaussian filter with 
a shape parameter and ANUSPLIN (Australian National University SPLINe) Hutchinson (1995, 
1999) which uses a thin plate spline algorithm to fit a smooth surface through data values. Each 
of these methods has shortcomings in mountainous regions where terrain variations have a 
substantial effect on local climate. \ 

To account for temperature inversions, efforts have also been made to utilize two atmospheric 
layers when deriving gridded temperature datasets. Using PRISM, Daly et at. (2003) divided 
meteorological point data into two sets and used weighting factors to limit the ability of stations 
above an inversion to influence the climate parameters within the mixed layer. A standard 
inversion height (based on radiosonde data) and predefined inversion locations were specified 
(Daly et at., 2003). The PRISM two layer approach has been successfully applied across North 
America (Daly et at., 1994,2003; Simpson et at., 2005). 

In addition to terrain, large water bodies can also influence climate patterns significantly. Daly 
et ai. (2003) accounted for coastal proximity by assembling a cost grid which accounts for 
distance from the coast, terrain blocking, and preferred wind directions to model coastal climate 
modifications. Perry and Hollins (2005) used the surface area of water within a 5 km radius of 
each climate station as a predictive variable for gridding monthly climate surfaces for the United 
Kingdom. Incorporating the area of surface water around each climate station in the regression­
interpolation methodology worked well in all seasons, with the exception of the summer months 

In this study, we have created an interactive model for deriving gridded estimates of daily T min 
(minimum temperature), T max (maximum temperature), and precipitation for the Okanagan Basin 
(Figure 1). An inverse distance weighting (IDW) interpolation algorithm similar to GIDS was 
utilized in conjunction with regional linear and non-linear regression to generate the climate 
surfaces from point data. Spline interpolation was not implemented because steep temperature 
gradients (i.e., differences in T max of 4-5 °C between stations located 500 m apart) resulted in the 
model creating hot and cold temperature pockets causing very large errors in the resulting 
temperature surfaces. This drawback of splining was also noted by Daly (2006) in a review of 
suitability guidelines for spatial climate datasets. In addition to latitudinal and elevation 
influences on temperature and precipitation, temperature inversions are accounted for using a 
two-layer method and lake effects are modeled by establishing the average long term 
temperature modification on station Tmax values. 

This study builds on past work that investigated the impacts a warmed climate could have on 
water resources in the Okanagan Basin (Cohen and Kulkarni, 2001; Neilsen et at., 2001; Cohen 
et at., 2006; Neilsen et al., 2006). The climate surfaces used in these studies were based on the 
monthly climate grids produced using PRISM. At a spatial scale of 4 and 1 km, the PRISM grids 
were too coarse to differentiate valley and mid-slope locations (Neilsen et at., 2001; 2006). 
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Figure 1: The Okangan Climate Data Interpolator Model splash screen. 

Geographic Region 

The Okanagan Basin encompasses approximately 8,000 km2 in the southern interior of British 
Columbia, Canada between 48° 56' and 50° 30' North latitude and 118° 37' and 120° 22' West 
longitude (Figure 2). Okanagan Lake (350 m ASL) and a number of smaller 'main-stem lakes' 
bisect the watershed. The elevations of the surrounding mountains range from approximately 
1,600 2,000 m asl. The region has a dry, continental climate due to its location in the rain 
shadow of the Coast (and Cascade) mountain ranges. On average, 88% of the 550 mm of mean 
annual precipitation is lost through evaporation and sublimation (Hall et ai., 200 I). Basin 
averages such as those reported by Hall et ai. (2001) mask the strong elevational and north-to­
south climate gradients that extend up the 160 km valley. The southern extent of the basin is 
much warmer and drier than the north. There is an obvious orographic effect as average annual 
precipitation ranges from just under 300 mm to just over 400 mm south to north in the valley 
bottom, but up to 770 mm in sub-alpine regions. 
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Figure 2: Okanagan valley watershed base map and study area location. Stations with labels used for cross­
validation. 

Climate Data 

Meteorological data were acquired from the Canadian Daily Climate Data - Temperature and 
Precipitation CD for Western Canada (Environment Canada, 2000). In total, data from 168 
stations (66 within the basin and 102 within approximately 70 km) were extracted from the data 
CD and used to generate a 41 year meteorological database of daily Tmin, and precipitation 
(1960 - 2000). Since the analysis described here, data up to 2006 have been included in the 
model. The lack of mid-high elevation meteorological stations in the Okanagan Basin 
necessitated the incorporation of the stations surrounding the Okanagan valley (Figure 2) and 
data from other weather data networks including the BC Environment Snow Pillow stations; BC 
Ministry of Transportation Highways Network and the BC Ministry of Forests Fire Weather 
Network. 

Digital Elevation Data 

A digital elevation model (DEM) with a 100-m grid cell size was created as a mosaic from 
DMTI Spatial's (Markham, Ontario) digital database. A sensitivity analysis of grid cell size on 
model error indicated that the optimal spatial resolution for the climate interpolation model was 
500 m. Thus, to increase computing efficiency and reduce disk storage requirements, while 
maintaining model integrity, the 100 m DEM was re-sampled to a grid cell size of 500 musing 
bilinear interpolation. 
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Modelling Methods 

The spatial analysis involves accounting for spatial, elevation, lake effect, temperature inversion, 
and latitudinal variability in the meteorological data. Interpolation by inverse distance weighting 
(IDW) was undertaken using the Spatial Analyst feature of ArcGIS (ESRI, Redlands, CA). 

Historic Temperature Grids 

Daily maximum and minimum temperature grids were created using step-wise regional 
regression in which daily residuals ofTmax and Tmin are interpolated using IDW. Following th,e 
interpolation, the effect of the explanatory variables (elevation and latitude) is re-introduced to 
the interpolated residual grid, thereby creating a spatial representation of each variable on a daily 
basis. The model can be represented using Equation 1. Interpolating these climate variables 
after removing the effect of elevation and latitude reduces the spatial bias errors that can occur 
with simple regression models (e.g., Goovaerts, 2000) and incorporates a spatial interpolation 
component for the unexplained component of the regression models (i.e., residual data values). 

(1) 

Where: 
T(i) = Daily temperature (either Tmax or Tmin) on day i 
~i) = Slope of elevation regression equation on day i 
E = Elevation at grid eell jk 
b(i) = Slope of latitude equation on day i 
L Latitude of grid celljk 
Yeo Model error (residual value from interpolated grid) on day i 

The elevation regression is applied if the trend is significant (p<=0.05) and the R2 value is 
greater or equal to 0.25. The R2 cut off was implemented to enhance the ability to detect 
inversions, and subsequently apply the two-layer model. Instead of extrapolating daily calculated 
lapse rates the constrained lapse rate approach of Stahl et at. (2006) was applied. Using the 
constrained approach default lapse rates, averaged by month, were used for grid cells in which 
the elevation is greater than the highest meteorological station that reported on any given day. 
The monthly default lapse rates were taken from Stahl et al. (2006) and were calculated using 
paired stations (Vernon Silver Star Lodge [1572 m] and Vernon Cold Stream Ranch [482 m D. 

While the elevation-temperature regression are calculated using all stations within 40 km ofthe 
watershed, the latitude-temperature regression is completed using stations located along the 
Okanagan valley only. The remaining stations located outside of the 40 km buffer are used to 
reduce the likelihood that the basin boundary extends beyond all meteorological stations that 
reported on any given day, thereby minimizing the potential for interpolation artifacts along the 
watershed boundary. 

Prior to the daily regression analysis the T max data are adjusted to remove the average 
cooling/heating effect of surface water bodies for all stations within 5 km of a water body. In 
our study area, daily lapse rates and the occurrence of temperature inversions in the Okanagan 
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Valley are strongly affected by Okanagan Lake. T min surfaces did not take lake effects into 
account because Tmin temperatures are typically measured around 5:00 am and are a function of 
local topography (Bolstad et al., 1998; Yoshikado and Kondo, 1989). Monthly lake induced 
temperature change per 10 km2 of lake area within 5 km of the meteorological stations were 
derived by regressing lake area with daily observed Tmax values using data from 1960 2000 
(Figure 3). The approach adopted provides a simplified method to produce a conservative 
quantification ofTmax modification as a result of surface water bodies. 

* 

7 8 9 10 11 12 

Month 

Figure 3: Predicted Tmax difference for every 10 kmz of adjacent lake area (January 1,1960 - December 31, 
2000). Outliers (shown with circles) are cases with values between 1.5 and 3 box lengths from the upper or 

lower inter-quartile range. Extremes are shown as a star. 

Also of particular importance are temperature inversions that typically develop at night during 
clear sky conditions in mountainous terrain (Whiteman et at., 2004). Using earlier versions of 
the model large temperature simulation errors occurred due to temperature inversions. As a 
result, the model incorporates a two-layer approach in which inversions (either Tmax or Tmin) are 
detected by fitting a second order polynomial to the observed data and comparing best-fit 
statistics with the linear regression model (Figure 4). If an inversion is detected, the observed 
temperature data are subset into two groups, including: 1) stations within the mixing layer (i.e., 
below the inversion), and 2) stations at elevations greater than the inversion height. The mixing 
height is defined as the elevation at which the derivative of a best-fit second order polynomial is 
zero. After the data are subset, the regular regression-interpolation approach is applied to the 
stations below the inversion. For the upper layer component a simple IDW interpolation is 
applied to the raw data. If fewer than 4 stations are included within the inversion the average air 
temperature is assigned to all locations above the inversion height. 
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Figure 4: Model decision structure for T min and Truax inversion and elevation-trend detection. 

Historic Precipitation Grids 

Gridded mean filter analysis was employed to match the scale of orographic processes in the 
region with the appropriate terrain representation. This analysis was completed by regressing the 
41 year (1960 2000) average winter and early spring precipitation (December, January, 
February, and March) with elevation using a series of increasingly generalized DEMs. The 
ensemble of DEMs was generated from the average elevation within a moving grid cell window 
with dimensions ranging from 3-by-3 to 99-by-99 grid cells. Based on this analysis, the 
elevation value used should represent the average elevation surrounding each meteorological 
station (Spreen, 1947; Barros and Lettenmaier, 1994; Daly et ai., 1994; Marquinez et at., 2003). 
Using the average elevation around each station avoids situations in which stations in narrow 
mountain valleys record more precipitation than their point elevations would suggest (Barry, 
1981). Similarly, stations located on narrow peaks may not accumulate as much precipitation as 
their elevation would suggest because the blocking effect ofthe peak is insufficient to generate 
uplift and hydrometeor formation. 

Daily precipitation grids were created using Equation 2. Prior to the spatial interpolation, the 
data were de-trended for the north-to-south precipitation gradient and the orographic component 
of precipitation. Again the north-to-south precipitation gradients were calculated using the 
Okangan Valley stations only (Figure 2). The precipitation model differs from the temperature 
model in that the regressions are based on monthly precipitation totals. To derive daily surfaces 
using monthly elevation-precipitation and latitude-precipitation relationships required the 
calculation of the percent of monthly precipitation at each station for each day. 

(2) 

Where: 
Pr(il Precipitation on day i 
aci) = Slope of elevation regression equation on day i 
E = Elevation at grid celljk 
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P Percent of monthy precipitation observed at cell jk on day i 
b(o = Slope of latitude equation on day i 
L = Latitude of grid celljk 
Y(i) = Model error (residual value from interpolated grid) on day i 

Two spatial interpolations are utilized, one for the residual values from the regression analysis 
and another to interpolate the percent of monthly precipitation on each day. Following the 
interpolation of daily precipitation percentages and regression model residuals using IDW, 
Equation 2 is reversed to create daily precipitation grids. In contrast to the one-step regression­
interpolation procedures developed by Daly et al. (1994), Thornton (1997), Nalder and Wein 
(1998), and Hutchinson (1999), the spatial dependences of latitude and elevation were removed 
before the spatial interpolation because the daily adjustments of each observed precipitation 
value were based on monthly precipitation totals. The month-based approach for precipitation 
was favored over daily regression analysis because with so few high elevation stations, single 
station anomalies at a daily time-step can affect the elevation-precipitation relationship 
significantly. These daily anomalies could be caused by localized terrain attributes and I or 
atmospheric phenomenon that may not be representative over the entire study area. 

Cross-validation of the interpolated climate surfaces was performed as follows. Six sites (Table 
1, Figure 2) and were removed from the analysis one station at a time. The climate surfaces were 
derived using the remaining stations, and the interpolated data were checked against the 
observations for the removed stations. The mean error (ME) (predicted-observed), mean 
absolute error (MAE) (average of absolute values of predicted-observed), root mean square error 
(RMSE) (standard deviation of the ME), and linear regression statistics (simulated versus 
observed) were determined on a daily basis at each of the six sites for maximum daily 
temperature, minimum daily temperature, and precipitation for a one-year time period (July 1, 
1989 June 30, 1990). Cross-validation of the precipitation surfaces was also performed on a 
monthly basis because the elevation-regression models were based on monthly precipitation 
totals. 

Table 1. Meteorological station attributes for six locations used to cross-validate the interpolated temperature 
and precipitation surfaces. 

Station Name Latitude Longitude Station Elevation (m) 
Vernon Silver Star 500 21' 119 0 03' 1,572 
Oyama 50° 07' 119° 22' 440 
Peachland Brenda Mines 49 0 52' 120 0 00' 1,520 
Penticton A 49 0 28' 119 0 36' 344 
Rock Creek Mt Baldy* 49 0 07' 119 0 09' 1,174 
Bridesville* 49° 03' 119 0 10' 1,187 
Osoyoos West 49 0 02' 119 0 27' 297 

*Only precipitation validated at Rock Creek Mt. Baldy because temperature data not observed during cross­
validation period. Bridesville used as the sixth station to verify temperature data in lieu of Rock Creek Mt. Baldy. 

Cross-validation ofthe daily and monthly precipitation surfaces showed the ME, MAE, and 
RMSE were largest at Vernon Silver Star and Peachland Brenda Mines (Table 2; Figure 2). The 
large errors at these locations were attributed to the lack of neighbouring stations on the same 
mountain range. Rock Creek Mt. Baldy, also a mid-elevation station, did not show a similar 
error due to its location nearby other mid to high elevation stations (Table 2; Figure 2). The 
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dependency of empirical regression analysis on the few high elevation stations is well 
documented and a common problem in alpine environments (Running et at., 1987; Daly et at., 
1994; Lookingbill and Urban, 2003). For the daily data the ME was closer to zero than the MAE 
for all stations, indicating that the errors were distributed around zero. With slopes near 1, y­
intercepts near 0, and high R2 values the monthly regression statistics for 5 out of 6 stations 
indicate that the precipitation error was small over the course of each month. 

Table 2: Comparison of Mean Error (predicted minus observed), Mean Absolute Error (average of errors 
after the errors are made positive), Root Mean Square Error (standard deviation of the errors), and linear 

regression statistics based on daily and monthly precipitation totals for six locations. 

Comparison Method 

Daily 
ME (mm) 
MAE (mm) 
RMSE(mm) 
Slope 
Y-intercept 
R2 

Monthly 
ME (mm) 
MAE (mm) 
RMSE(mm) 
Slope 
Y-intercept 
R2 

i 

Vernon 
Silver 
Star 

-0.9 
1.7 
3.7 
058 
0.37 
0.58 

-25.3 
25.9 
23.6 
0.66 
4.24 
0.88 

Oyama 

0.1 
0.5 
1.1 
088 
0.19 
0.84 

2.0 
3.9 
4.7 
1.03 
1.19 
0.97 

Peachland 
Brenda 
Mines 

0.2 
1.6 
3.2 
087 
0.46 
0.53 

6.0 
12.1 
13.8 
1.17 

-4.57 
0.89 

Pentiction 
A 

0.0 
0.9 
2.3 
063 
0.41 
0.60 

-0.8 
5.4 
8.2 
0.90 
2.97 
0.91 

Rock 
CreekMt. 

Baldy 

0.2 
0.9 
2.2 
078 
0.54 
0.68 

5.0 
9.1 
9.9 
0.95 
7.36 
0.93 

Osoyoos 
West 

0.2 
0.5 
1.9 
107 
0.18 
0.69 

7.5 
7.8 
9.4 
1.13 

-2.40 
0.98 

Cross-validation of the predicted temperature surfaces indicates that, on average, the daily 
maximum temperature surfaces were more accurate than the minimum temperature surfaces 
(Table 3). The higher Tmin error was likely because there were more days when no 
distinguishable minimum temperature lapse rate was found (Figure 5). The weak relationship 
between minimum daily temperatures and elevation is likely due to the drainage of cold air from 
mid and high elevations into valley bottoms, which leads to the formation of atmospheric 
inversions (Cox, 1920; Barry, 1981; Whiteman et at., 2004). The negative ME, low regression 
slope, and negative y-intercept for Tmin at the high elevation stations Vernon Silver Star and 
Peachland Brenda Mines indicates that the predicted minimum temperatures were lower than 
observed, which would contribute to conservative snow pack melt rates. The relatively small 
ME for the low elevation stations (i.e., Oyama, Penticton A, Osoyoos West) is an indication that 
the 500 m grid cell size used in this study is an advantage over the 4 and 1 km temperature grids 
that were used for the crop water demand study conducted by Neilsen et at. (2001;2006). 
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Table 3: Comparison of Mean Error (predicted minus observed), Mean Absolute Error (average of errors 
after the errors are made positive), Root Mean Square Error (standard deviation of the errors), and linear 

regression statistics based on daily maximum and minimum temperatures for six locations. 

Comparison 

Max. Daily Temp. 
MEeC) 
MAEeC) 
RMSE("C) 
Slope 
Y.intercept 
R2 

Min. Daily Temp. 
ME("C) 
MAEee) 
RMSECC) 
Slope 
Y-intercept 
R2 

35 
(l) 

1! 30 (l) 
til 
Q. 

..!!! 25 
Cl 
s:: e 20 'Ii) 
s:. 
:= 15 ;: 
s:. 
1: 10 o 
E 
~ 5 
Q. 

til 

Silver 
Star 

1.0 
1.7 
2.0 
0.99 
1.09 
0.96 

-2.0 
2.5 
2.5 
0.87 

-2.20 
0.90 

i;' 0 .l-""---'-" 
o 

Oyama 

-0.1 
0.7 
1.0 . 
1.01 

·0.18 
0.99 

-1.1 
1.2 
1.0 
0.96 

-0.90 
0.97 

Peachland Pentiction Bridesville 
Brenda A 
Mines 

0.8 -0.2 1.5 
1.5 0.7 1.8 
1.8 0.9 1.5 
0.98 1.03 0.99 
0.96 -0.56 1.69 
0.96 0.99 0.98 

-1.8 0.4 1.0 
2.4 1.2 1.7 
2.3 1.4 1.9 
0.87 0.95 0.90 
-1.9 0.59 0.91 
0.89 0.96 0.93 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Osoyoos 
West 

0.9 
1.0 
0.8 
1.04 
0.25 
0.99 

-0.1 
0.6 
0.9 
0.97 
0.08 
0.98 

Figure 5: Average monthly frequency of strong lapse rates (p<=0.05 and R2 2: 0.25) observed using linear 
regression analysis of daily temperatures and climate station elevation from August 1, 1960 - July 31, 1990. 

Future Climate Surfaces 

Future daily temperature and precipitation surfaces were developed using multiple Global 
Climate Models (GCMs) and 3 IPCC greenhouse gas emissions scenarios (SRES). The six 
GCMs used were CGCM2, CGCM3, CM2.1, ECHAM5, HadCM3, PCMl. The SRES scenarios 
included A2 which describes a very heterogeneous world with high population growth, slow 
economic development and slow technological change; B 1 which describes a convergent world, 
with a global population that peaks in mid-century with rapid changes in economic structures 
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toward a service and information economy and B2 which describes a world with intermediate 
population and economic growth, emphasising local solutions to economic, social, and 
environmental sustainability. No likelihood has been attached to any of the SRES scenarios 
OPCC, 2008). 

Data were downscaled to 500 x 500m grid cells using TreeGen (Cannon, 2008) a model which 
combines a synoptic variable classification scheme (Cannon et al., 2002) with a weather 
generator. In this way, observed synoptic-scale atmospheric predictor variables are related to 
observed surface weather variables, and then, based on these relationships, realistic series of 
weather variables are generated from GCM synoptic scale variables. Algorithm details are given 
in Stahl et al. (2008, Appendix A). Predictors in the classification model were mean sea-level 
pressure surface air temperature, and surface precipitation data from the US NCEP/NCAR model 
reanalysis (Kalnay et al., 1996). Daily mean maps from 1948-2006 were obtained for a region 
covering western North America and the North Pacific Ocean (300N-700N; 1600W-1100W). 
Data were sub-sampled from the 2.5° by 2.5° resolution grid to a 5° by 7.5° grid to facilitate later 
use with coarser spatial resolution GCM data. Synoptic-scale fields matching those from the 
NCEP/NCAR Reanalysis were obtained from transient greenhouse gas plus aerosol runs of were 
CGCM2, CGCM3, CM2.1, ECHAM5, HadCM3, PCMl for simulated years 1961-2100 with 
forcing variables from the A2 SRES scenario and one of the Bl or B2 SRES scenarios. 
Concurrent daily weather conditions in the Okanagan Valley were represented by precipitation 
amounts, mean temperatures, and diurnal temperature ranges at major surface stations. The 
"stations" in this case are a subset of points from the gridded climate field. Derived climate 
normal variables at all points in the basin were first clustered and were used to split the area 
into a series of homogeneous climate regions. Finally, the grid points nearest to the cluster 
centroids served as stations in the downscaling. 

The Okanagan Climate Data Model (Figure I) has been used to drive the Okanagan Irrigation 
Water Demand Model, which provides calculations of Penman Monteith reference ET and a 
range of agro-climatic indices for each climate grid cell in addition to crop and terrain based 
irrigation water demand. 
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